Ionic mechanisms of regional action potential heterogeneity in the canine right atrium.

نویسندگان

  • J Feng
  • L Yue
  • Z Wang
  • S Nattel
چکیده

Atrial action potential heterogeneity is a major determinant of atrial reentrant arrhythmias, but the underlying ionic mechanisms are poorly understood. To evaluate the basis of spatial heterogeneity in canine right atrial repolarization, we isolated cells from 4 regions: the crista terminalis (CT), appendage (APG), atrioventricular ring (AVR) area, and pectinate muscles. Systematic action potential (AP) differences were noted: CT cells had a "spike-and-dome" morphology and the longest AP duration (APD; value to 95% repolarization at 1 Hz, 270+/-10 ms [mean+/-SEM]); APG and pectinate muscle cells had intermediate APDs (180+/-3 and 190+/-3 ms, respectively; P<0.001 versus CT for each), with APG cells having a small phase 1; and AVR cells had the shortest APD (160+/-4 ms, P<0.001 versus other regions). The inward rectifier and the slow and ultrarapid delayed rectifier currents were similar in all regions. The transient outward K+ current was significantly smaller in APG cells, explaining their small phase 1 and high plateau. L-type Ca2+ current was greatest in CT cells and least in AVR cells, contributing to their longer and shorter APD, respectively. The E-4031-sensitive rapid delayed rectifier K+ current was larger in AVR cells compared with other regions. Voltage- and time-dependent current properties were constant across regions. We conclude that myocytes from different right atrial regions of the dog show systematic variations in AP properties and ionic currents and that the spatial variation in ionic current density may explain AP differences. Regional variation in atrial ionic currents may play an important role in atrial arrhythmia generation and may present opportunities for improving antiarrhythmic drug therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical analysis of canine atrial action potentials: rate, regional factors, and electrical remodeling.

Dogs have been used extensively to study atrial arrhythmias, but there are no published mathematical models of the canine atrial action potential (AP). To obtain insights into the ionic mechanisms governing canine atrial AP properties, we incorporated formulations of K(+), Na(+), Ca(2+), and Cl(-) currents, based on measurements in canine atrial myocytes, into a mathematical model of the AP. Th...

متن کامل

The sinoatrial node, a heterogeneous pacemaker structure.

This article focuses on the regional heterogeneity of the mammalian sinoatrial (SA) node in terms of cell morphology, pacemaker activity, action potential configuration and conduction, densities of ionic currents (i(Na), i(Ca,L), i(to), i(K,r), i(K,s) and i(f)), expression of gap junction proteins (Cx40, Cx43 and Cx45), autonomic regulation, and ageing. Experimental studies on the single SA nod...

متن کامل

Repolarizing K+ currents ITO1 and IKs are larger in right than left canine ventricular midmyocardium.

BACKGROUND The ventricular action potential exhibits regional heterogeneity in configuration and duration (APD). Across the left ventricular (LV) free wall, this is explained by differences in repolarizing K+ currents. However, the ionic basis of electrical nonuniformity in the right ventricle (RV) versus the LV is poorly investigated. We examined transient outward (ITO1), delayed (IKs and IKr)...

متن کامل

Potential ionic mechanism for repolarization differences between canine right and left atrium.

Experimental and clinical evidence suggests a critical role for the left atrium (LA) in atrial fibrillation (AF). In animal models, repolarization is faster in the LA than in the right atrium (RA), leading to more stable reentry circuits with a shorter intrinsic period in the LA. The ionic mechanisms underlying LA-RA repolarization differences are unknown. Therefore, we evaluated ionic currents...

متن کامل

Transmembrane action potential heterogeneity in the canine isolated arterially perfused right atrium: effect of IKr and IKur/Ito block.

The role of electrical heterogeneity in development of cardiac arrhythmias is well recognized. The extent to which transmembrane action potential (TAP) heterogeneity contributes to the normal electrophysiology of well-oxygenated atria is not well defined. The principal objective of the present study was to define regional and transmural differences in characteristics of the TAP in isolated supe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 83 5  شماره 

صفحات  -

تاریخ انتشار 1998